NAVAL POSTGRADUATE SCHOOL
Monterey, California

19960801 075 THESIS

IMPLEMENTATION AND EFFICIENCY OF STEGANO-

GRAPHIC TECHNIQUES IN BITMAPPED IMAGES AND

EMBEDDED DATA SURVIVABILITY AGAINST LOSSY
COMPRESSION SCHEMES

by
Daniel L. Cumie, III
Hannelore Campbell
March 1996

Thesis Advisors: Cynthia E. Irvine
Harold Fredricksen

Approved for public release; distribution is unlimited.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT
REPRODUCE LEGIBLY ON BLACK
AND WHITE MICROFICHE.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

e —— e ——— #
. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1996 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

IMPLEMENTATION AND EFFICIENCY OF STEGANOGRAPHIC
TECHNIQUES IN BITMAPPED IMAGES AND EMBEDDED DATA
SURVIVABILITY AGAINST LOSSY COMPRESSION SCHEMES

€ AUTHOR(S)

Currie, Daniel L. II1

Campbell, Hannelore

7. PERFORMING ORGANIZATION NAMEiS) AND ADDRESS(ES) 5. PERFORMING ORGANIZATION
Naval Postgraduate Schoo. REPORT NUMBER
Monterey, CA 93943-5000

e ————— A
3. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 70, SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES . |] .) .
The views expressed in this thesis are those of the authors and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for phblic release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)) o i)]
The term steganography is descriptive of techniques used to covertly communicate by embedding

a secret message within an overt message. Such techniques can be used to hide data within digital images
with little or no visible change in the perceived appearance of the image and can be exploited to covertly
export sensitive information. This thesis explores the data capacity of bitmapped image files and the fea-
sibility of devising a coding technique which can protect embedded data from the deleterious effects of
lossy compression.
In its simplest form, steganography in images is accomplished by replacing the least significant
bits of the pixel bytes with the data to be embedded. Since images are frequently compressed for storage
or transmission, it is desirable that a steganographic technique include some form of redundancy coding
to counter the errors caused by lossy compression algorithms. Specifically, the Joint Photographic Expert
Group (JPEG) compression algorithm, while producing only a small amount of visual distortion, intro-
duces a relatively large number of errors in the bitmap data. These errors will effectively garble any non-
coded steganographically embedded data. (continued on reverse)

14. SUBJECT TERMS i _ 15. NUMBER OF PAGES
Steganography, Covert Channels, Security, Compression 87
16, PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPQRT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
1 Prescribed by ANSI Std. 239-18

]

Block 13 continued:

This thesis shows that, although there are numerous protocols for embedding data within pixels,
the limiting factor is always the number of bits modified in each pixel. A balance must be found between
the amount of data embedded and the amount of acceptable distortion. This thesis also demonstrates that,
despite errors caused by compression, information can be encoded into pixel data so that it is recoverable
after JPEG processing, though not with perfect accuracy.

Standard Form 298, (Reverse)
11

Approved for public release; distribution is unlimited

IMPLEMENTATION AND EFFICIENCY OF STEGANOGRAPHIC TECH-
NIQUES IN BITMAPPED IMAGES AND EMBEDDED DATA SURVIVABILITY
AGAINST LOSSY COMPRESSION SCHEMES

Daniel L. Currie II
Lieutenant, United States Navy
B.S., West Virginia Institute of Technology, 1987
‘and
Hannelore Campbell
Lieutenant, United States Navy
B.S., Vanderbilt University, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the
NAVAL POSTGRADUATE SCHOOL
March 1996

Authors: Q "\,/ 0) /M

Daniel L. Currie, II1

Hannelore Campbell
Aﬁproved by: /éf A)
CynUthia E. %e, Thesis Advisor

Harold Fregdricksen, T@Advisor

(Ylb-

Ted Lewis, Chairman
Department of Computer Science

i

ABSTRACT

The term steganography is descriptive of techniques used to covertly communicate
by embedding a secret message within an overt message. Such techniques can be used to
hide data within digital images with little or no visible change in the perceived appearance
of the image and can be exploited to covertly export sensitive information. This thesis
explores the data capacity of bitmapped image files and the feasibility of devising a cod-
ing technique which can protect embedded data from the deleterious effects of lossy com-
pression.

In its simplest form, steganography in images is accomplished by replacing the
least significant bits of the pixel bytes with the data to be embedded. Since images are fre-
quently compressed for storage or transmission, it is desirable that a steganographic tech-
nique include some form of redundancy coding to counter the errors caused by lossy
compression algorithms. Specifically, the Joint Photographic Expert Group (JPEG) com-
pression algorithm, while producing only a small amount of visual distortion, introduces a
relatively large number of errors in the bitmap data. These errors will effectively garble
any non-coded steganographically embedded data.

This thesis shows that, although there are numerous protocols for embedding data
within pixels, the limiting factor is always the number of bits modified in each pixel. A
balance must be found between the amount of data embedded and the amount of accept-
able distortion. This thesis also demonstrates that, despite errors caused by compression,
information can be encoded into pixel data so that it is recoverable after JPEG processing,

though not with perfect accuracy.

vi

118

VL

TABLE OF CONTENTS

INTRODUCGTION oottt ettt 1
A, WHATIS STEGANOGRAPHY? ..o 1
B. PUBLISHED WORK ON STEGANOGRAPHY ..o 1
C. USES OF STEGANOGRAPHY ... 3
1. Subliminal COMMUNICAtIONccviieriieiie e eee e 3

2. Integrity and Authentication ... 3

3. THECH EXTUITALION ..ot 4

D. SCOPE OF THESIS .. oottt 5
STEGANOGRAPHIC TECHNIQUES ..o 7
A, WRAPPER FILES ... oottt 7
B, IMAGE STORAGE ..ottt 8
C. PROTOCOL EVENT SELECTIONcccooiiiiiiiiiiiiiii i 10
D. MESSAGE LOCATION ...t 10
E. COMPARISON-BASED BIT INSERTION PROTOCOLS [10] 11
1. Bit INVEISION oottt ettt e et 12

2. Bit INSEITION L.oooveie oottt 13

3. Bit Deletionc..ccooooiieiiiiiiieceee e 14

4. FIAZ BIt ..o 15

5. ThreShOId BItS ..oooioeeeoe oo 15

F. MESSAGE BIT INDEPENDENT INSERTION PROTOCOLS 16
1. Direct Bit Replacement ... 17

2. Neighbor Parity ... 17
STEGANOGRAPHIC DATA CAPACITY ..o 19
A. DATA EMBEDDING DENSITY ... 19
B. THEORETICAL LIMITS ... e 19
C. PERCEPTUAL LIMITS .ottt 19
1. PixXEl STIUCIUTE oot 20

2. Content and Texture of IMagescoocooiiiiiiiii 20

3. Hidden Data Location Within an Image ... 23
EMBEDDED MESSAGE SURVIVABILITY ..o 25
A. IMAGEPROCESSING ISSUES 25
B. JPEG COMPRESSION ..ottt 25
C. JPEGEFFECTS ONIMAGEDATA ... 26
1. EFFECts ON PIXELS ..ottt 27

2. Error DIStiDULIONooveiie oot 28

D. ERROR CORRECTING SCHEMESccoiiiiiiiiiiiiiieeie e 29
E. ANEFFECTIVE CODING SCHEMEocooiiiii 31
DISCUSSION AND CONCLUSIONS ..o 33
A, STEGANOGRAPHY FOR ILLICIT EXFILTRATION ... 33
B. STEGANOGRAPHIC APPLICATIONS ..., 34
SUGGESTIONS FOR FURTHER RESEARCHccoccoiiiiii 35

Vil

A. AN UNEXPLORED DISCIPLINE ... 35

1. Detecting Steganography in Image Files ... 35

2. How Widespread is the Use of Steganography? ... 36

3. Steganography on the World Wide Web ... 36

4. Steganography in Printed Media ... 36

5. Anti-Steganography Measures ... 36

LIST OF REFERENCES ... e 37
APPENDIX: SOURCE CODEooiiiiiiiit et 39
A. GENERIC STEGO EMBEDDING PROGRAM ... 39

B. GENERIC STEGO EXTRACTION PROGRAM ... 45

C. IMAGE FILE COMPARISON PROGRAM ..., 56

D. RGB VECTOR ENCODING STEGO PROGRAM ..., 61

E. RGB VECTOR STEGO EXTRACTION PROGRAM ... 68

F. STEGO FUNCTIONS HEADER FILEccccoooiiiiiii s 72
INITIAL DISTRIBUTION LIST ... e 77

viil

I. INTRODUCTION

A. WHAT IS STEGANOGRAPHY?

Steganography is closely related to cryptography. Unlike cryptography where
communication is overt, but the content is secret, steganography is the science of secretly
communicating by means of concealing information within some data medium. It
encompasses a large variety of techniques and protocols. Steganography can range from a
simple modification of English text by modulating active and passive voices to utilizing the
least significant bits in digital image pixels to unobtrusively embed additional information.
Any steganographic technique will necessarily cause some distortion or modification of the
original data. The key to successful steganography is to ensure the distortion caused by the
hidden data is undetectable visually by either a human observer who knows the data is there
or one who does not.

The term steganography was coined in 1499 by Johannes Trimethius (1462-1 516) who
used apparently meaningful prayers to hide covert messages [7]. Although it has been used
along with cryptography for centuries in secret communications, until recently, little effort
has been made to formally study or define steganography. Interest has been building,
however, as evidenced by an increase in the amount of discussion of steganography in the

cryptographic and computer security communities.

B. PUBLISHED WORK ON STEGANOGRAPHY

A search of the literature on and relating to steganography yields very few works
exclusively discussing the subject. Steganography is usually addressed as an adjunct or
offshoot of cryptography. It has rarely been discussed as a science in its own right. This is
probably because, until the advent of high volume/high speed data communications, the
threat of covert communication was relatively small given the usually small bandwidth

provided by most steganographic techniques.

One of the earliest known published treatises on steganography was the six volume
“Steganographia” by Trithemius. Trithemius described simple vowel-consonant
substitutions and systems where certain letters in nonsense words comprise the hidden text.
His best known invention is the “Ave Maria” in which each of many carefully selected
words was used to represent a plaintext letter. The words were chosen such that when
combined they made sense and appeared to be an ordinary prayer [7].

“Steganographia” was controversial due to its perceived connection with magic and
the occult. Although written in 1499, it was not published until 1606 and the controversy
surrounding it caused it to be banned in 1609 by the Roman Catholic Church. During the
200 years it was banned, “Steganographia” was reprinted several times and was the subject
of extensive written debate by scholars.

Not until the twentieth century did steganography become recognized as a significant
threat to information security. In [7] Kahn discusses the threat of covert transmission of
intelligence within legitimate civilian communications during wartime. During World War
II, concem over such communications led to censorship of pictures, chess boards,
crossword puzzles, newspaper clippings, etc.

More recently, there has been a huge increase in large scale electronic storage of
classified military data. When data is declassified or downgraded, thereis a threat of covert
channels being used to move data from one classification domain to another. In [9] Kurak
and McHugh showed that it is a simple matter to hide information within digital images and

then later extract it.

Utilizing a subliminal channel for transmission of authentication data is the subject of
The Prisoners’ Problem and the Subliminal Channel [12]. Although referred to as
subliminal channel communication by Simmons rather than steganography, authentication
of covertly transmitted data is an important aspect of steganography. If a third party

discovers the steganograph being used, there is a risk of spoofing.

C. USES OF STEGANOGRAPHY

Steganography is often thought of only as a tool for a malicious user to subvert a
security policy, but there are actually three fundamental classes of steganography
employment: subliminal communication, integrity and authentication, and illicit
exfiltration of data. It is important to note that subliminal communication is not necessarily
malicious or illicit. We define subliminal communication as simply a transfer of data in a
manner which conceals the fact that data other than the overtly communicated information
is being transmitted. Tlicit exfiltration, on the other hand, is a deliberate violation of a

security policy.

1. Subliminal Communication

Secretly transferring data is accomplished by using a technique to hide the data within
another set of data called a wrapper. This wrapper may be virtually any type of file or data
stream. A covert channel is one in which communication takes place by means that are not
normally used for communication [5]. A steganographic channel is distinct from a covert
channel in that it is concomitant with overt communications. The variety of steganographic
channels is limited only by the creativity of the communicator. Some methods of
concealing data include:

» Modulating word or line spacing in a text document

« Using the first letter of each word or paragraph as a letter of the message
» Modulating the tense or voice of verbs

« Using the least significant bit(s) (LSB) of each pixel in an image file

« Using the LSB(s) in a digitized sound file

2. Integrity and Authentication

Integrity of data is another important aspect of computer system security.
Steganographic techniques can be used to embed a seal within an image file in such a way
that the data cannot be modified by even a single bit without detection. This provides both

authentication and tamper-proofing of the image. Steganography has the advantage that the

presence of embedded data is usually not detectable and cannot be altered or removed
without knowledge of the exact technique used.

In [14], Walton describes a technique which guarantees the integrity of image files.
This method employs an algorithm which visits certain, randomly chosen pixels, modifying
them to produce a desired checksum value. The seal key is the order in which the pixels are
visited. This “random walk” sealing method ensures integrity since “...an interloper cannot
tell if an image has been sealed, has no way of finding the unchanged LSBs, and cannot
blanket your image with all possible seals.”

Documents and images are tagged for a variety of reasons from enforcing copyright
ownership to archival marking of data. Steganographic techniques provide an unobtrusive
way to tag a file without lengthening the file or subjecting the tag to possible alteration or
removal. AT&T explored a tagging system in which subtle changes in line spacing in
postscript files were used to encode a serial number. This technique proved to be effective
even when the document was photocopied numerous times. [2]

A successful steganographic technique for authentication and integrity will necessarily
rely on protecting the steganographic method and any keys used to encrypt the hidden data.
Additionally, once data has been steganographically embedded within a file, care must be
taken to keep the original file separate from the altered file. Allowing comparison of the

two files undermines the secrecy of the steganographic channel’s existence.

3. Iicit Exfiltration

Of the many means of illicit exfiltration of data, steganography is perhaps the most
insidious in that it requires a sophisticated user to implement and can provide a high
bandwidth communication channel. It is an especially grave threat in an environment where
data files are being downgraded from a high security class to a lower one. The malicious
user can embed classified data within a wrapper file of equal classification which he
expects to be downgraded. The data can then be extracted when the wrapper file is moved

to a lower security classification domain.

D. SCOPE OF THESIS

This thesis is intended to be expository on the subject of steganography, to survey
steganographic techniques and their efficiency, and to investigate the feasibility of devising
a robust form of steganography that can survive lossy compression. Our ultimate goal is to
highlight the threat of steganography to system security and to demonstrate a
steganographic technique which could be used to thwart a multi-level system security
policy in an image storage, processing, and downgrading system which relies on a trusted

subject.

II. STEGANOGRAPHIC TECHNIQUES

A. WRAPPER FILES

A wrapper is the medium into which a message (hidden data) is embedded. As with
encryption, steganography can be performed on a block of data or on a data stream. For the
purposes of this thesis we will be concerned with block steganography carried out on data
files rather than stream steganography. A variety of data files are commonly used in
computer systems. Each type of file has characteristics which must be taken into account
when devising a steganographic technique. In general, files in which the data is stored with
a far greater accuracy than necessary for the data’s use and display are suitable for
steganography. Image, Postscript, and audio files are among those which fall into this
category, while text, database, and executable files do not.

A text file contains a relatively low data density. Certain aspects of the file, such as the
bits which comprise the characters, are off limits to steganography because any changes
cause obvious damage to the file. Other aspects, such as character, word, or line spacing,
can be subtly modified to hide data. These techniques yield a low bandwidth, but are useful
for document tagging or any other purpose which requires a small amount of hidden data.

With the increased use of multimedia in applications, sound files are much more
common and provide an ideal medium for steganography. Due to the imprecise nature of
human hearing, modifications to a sound file by a steganographic technique would have to
be relatively large to be detected by a human observer. With a properly designed
steganographic technique, even an informed observer listening to the modified and
unmodified sound files in quick succession would have difficulty hearing a change.
Consequently, a sound file can hold a much larger message than can be embedded in a text
file.

By far the most readily available and suitable wrapper files are image files. Image files
are ubiquitous in a large number of applications. As with sound files, image files have a

high data density and small changes can be made without detection.

B. IMAGE STORAGE

The format in which images are created and stored varies with the application. The
image can be as simple as a bi-level format where each pixel is either on or off
corresponding to bit value of 1 or 0. A better quality image can be made by using 8 bits for
each pixel, allowing 256 shades of gray per pixel. Using 24 bits for a pixel to encode a color
value yields an even more accurate and realistic image. Clearly any number of bits and
pixel encoding schemes can be used to provide any desired level of detail. In general, as the
number of bits used to represent a discrete component of a file (in this case a pixel)
increases, the file’s utility as a wrapper increases.

Due to their gross granularity, bi-level images are difficult to utilize as wrapper files.
A steganographic technique would introduce noise into the image which would likely cause
noticeable degradation. This effect is mitigated in complex or noisy images. In sparsely
detailed images, however, any changes will probably be easily spotted.

Grey scale images are much more suitable for hiding messages. Altering the low order
bit of the eight bits used to represent a pixel causes only a 1/256, or 0.39%, change in the
shade of grey. This small change is undetectable by the human eye. Furthermore, altering
the four low order bits induces at most a 16/256, or 6.25%, change.

The percentages above represent a worst case scenario. When a message bit is
embedded into the wrapper file, the target bit in the wrapper file will be changed only if it

differs from the message bit. The likelihood that the target bit will be changed is 0.5.

Therefore, embedding n bits will result in an average of n/2 bits being modified in the

wrapper file.

Original 1ol o[22 iololi ol [1Jolol 1] Tolot 1] 1ol 1

Wrapper - :

Pixels L Pixell | Pixel2 | Pixel3 |

yi?:sage ol1[i[1T1fololo[1]1]o
e \’v-“’v-’\

Transmitted / \ -
Steganographed [/O[[1[1[o[1[tfofo[t[o]t[ofoft[t[ofolo[t]t]o
Pixels L__Pixell | Pixel2 | Pixel3 |

Figure 1: Direct Insertion of Message Bits

Figure 1 demonstrates how a message can be embedded into a wrapper file composed
of 8 bit pixels representing 256 shades of grey. The steganographic technique replaces the
four low order bits of each pixel with the data bits. In the first pixel only two bits are
changed, resulting in a 4/256, or 1.56%, change in its shade of grey. The message bits
embedded in the second pixel matched the pixel’s original bits, therefore no change was
made.

Color images, specifically 24 bit color images, are extremely common. One can easily
extrapolate from the above example and see that a 24 bit pixel is capable of holding much
more embedded data with only a small change in the appearance of the pixel. This thesis

will focus on this type of file. The amount of data which can be embedded in a 24 bit color

image file and the degree of the resulting distortion of the image as a whole will be

investigated.

C. PROTOCOL EVENT SELECTION

When applying a steganographic technique to a wrapper file there must be a protocol
for the selection of the specific points in the file at which the message bits will be
insinuated. This is known as protocol event selection (PES). In the context of image files
the PES algorithm will select pixels in which data will be hidden.

The PES algorithm is an integral part of any steganographic technique. For our
purposes, it involves selecting pixels in an image file viewed as a linear arrangement of
pixels numbered from 1 to W*H, where W is the width in pixels of the image and H is the
height. It can be defined as a mathematical function which generates numbers
corresponding to the numbers of the pixels to be used. A simple example would be to use
every pixel p where p mod 2 is equal to O (i.e. every even numbered pixel). Any function
is suitable as long as it selects enough pixels to embed the desired number of bits.

Another PES method is based on a predetermined key which provides a map of the
order in which pixels are used. This key may be designed so as to produce a pseudo-random
“walk” from pixel to pixel [14]. The walk, however it is generated, must not visit the same
pixel twice.

When incorporating a predetermined key scheme into a steganographic protocol,
provision must be made for embedding the key in the image along with the hidden data or
passing the key separately. This PES method is also very sensitive to errors in the key since

any key error would make complete recovery of the embedded data nearly impossible.

D. MESSAGE LOCATION

Once a PES method is established, the location within the image where the message
will be hidden must be determined. Commonly, the entire image is used in order to
maximize the amount of data which can be hidden. Using the entire image also spreads the

message over the image so as to reduce the density of the hidden data and thereby reduces

10

the perceived distortion of the image. Nevertheless, there are several techniques and
reasons for localizing the message within an image.

The goal of steganography is to hide data in such a way that it is not detectable by the
human eye. One way of doing this is to put the hidden data in an area where it is unlikely
to be noticed. Most pictures have a subject which is the center of attention to which the eye
is naturally drawn. Lacking a particular subject or area of interest, the eye will be drawn to
the center of the picture. Clearly, these areas should be avoided by a steganographic
technique. Another consideration for the location of hidden data is the texture, or “busy-
ness,” of different areas of the picture. For example, in a photograph of a forest with clear
blue sky overhead, distortion would be more easily detected in the sky area than in the
forest area.

Setting aside the issue of covertness, it is often desirable to provide redundancy in the
hidden data to counter the effects of errors introduced into the image file. Figure 2 shows

possible arrangements of redundant hidden data.

Figure 2: (Shaded areas indicate hidden data)

Incorporating redundancy in this way provides some protection against errors
introduced in transmission, processing, and compression. It can also allow for recovery of

the hidden data when the entire image file is not available.

E. COMPARISON-BASED BIT INSERTION PROTOCOLS [10]

The actual insinuation of message bits can be accomplished by several protocols. The

PES technique can be viewed as a means of moving a pointer to an insertion point within

11

the bits of the wrapper file. Having selected an insertion point, an insertion protocol is used
to place a message bit in the wrapper file. The insertion protocol can involve a replacement
of the insertion point bit or its neighbors, or insertion of the message bit between wrapper
bits near the insertion point. Inserting message bits between wrapper bits has the effect of
shifting all the wrapper bits after the insertion point. This will cause undesirable effects in
some types of wrapper files. Specifically, if bits in an image file are shifted without regard
to the pixels (i.e. the image file is treated as a continuous stream of bits rather than a series

of discrete pixels) then insertion of a few bits will essentially randomize the image.

1. Bit Inversion
The insertion point bit is specially selected to encode the message bit. If the message
bitis 1 then the insertion point bit must be a 0 and is inverted to represent the message bit.

Likewise, if the message bit is a O then the insertion point bit mustbe a 1.

Message
Bits 1191
e S Bomt
g Y \ N
Original 1011%0}11100101100110011§01
Wrapper . - '
Pixels | Pixell | Pixel2 | Pixel3 |
Transmitted : , ;
Steganographed [1191]11{1[1]1]0]]1]0 1to]ojo]1]1jojo]1]1}111
Pixels | Pixell | Pixel2 | Pixel3 |

Figure 3: Bit Inversion

12

This technique requires that the original wrapper be compared to the stegotext to

recover the message. When comparing the files, every differing bit and its value is noted.

2. Bit Insertion

The insertion point bit is chosen to be the opposite value of the message bit. The

message bit is then inserted immediately prior to the insertion point bit.

Message
Bits 1j0}1
%)nsprtion %)ns_em'on %)ns.ertion
oint oint oint
5 y \ N

Original tfo[1] e[] 1] Jofo]t o[fx{Jo] 1 1]o]o] 1 1]o]

Wrapper : i -

Pixels L Pixell | Pixel2 | Pixel3 |
Transmitted o — P}‘
Steganographed 110{1{1}1]0{1|1{1]0[0| 1]01}0| 1{0[0| 1{1{0]0|1| 1} 1{0{1
Pixels | Pixell | Pixel2 | Pixel3 |

Figure 4: Bit Insertion

The message is extracted by comparing the wrapper with the stegotext and noting
where a bit differs and its value. In this technique an extra bit is inserted in the wrapper so
when the message bit is extracted, the bits to the right must be shifted left to regain

alignment.

13

3. Bit Deletion
In this case, the insertion point is chosen as a pair of bits; either a 01 or 10 depending
on the message bit. If a 1 is to be inserted then a 10 pair is chosen and the 1 of the pair is

deleted. Similarly if a 0 is to be inserted, a 01 pair is chosen and the 0 of the pair is deleted.

Message
Bits o{1j0
. i
i’nserttlon {)nspzhon {)rlszrttlon
om om (¢)1
. v ™ ™~
Original 1o 1] 1o[x] 1] Jo[o]t[o[1]1]oio] 1] 1]o]o| 1 1j0]1
Wrapper . - . <
Pixels | Pixell | Pixel2 | Pixel3 |
Transmitted . : 5
Steganographed 1(011]11:1{1]0]0]1]0]10:0/1]1{ 0[O} 1] 1{1
Pixels | Pixel] | Pixel2 | Pixel3 |

Figure 5: Bit Deletion

Again, the message is extracted by noting the difference between the wrapper and the

stegotext. A right shift is necessary to regain alignment and continue with the comparison.

14

4. Flag Bit
With this technique, a wrapper bit equal to the message bit is selected. The bit

preceding the selected wrapper bit is inverted and acts as a flag for the message bit.

Message
Bits 191
{)ns_enion },ns'enion i}nsprtion
oint oint oint
N V N N
Original to[1[1]ofx} 1] fofof1 o[1] 1fofo] 1 1]ofo[1E1 o[
Wrapper : - . -
Pixels | Pixell | Pixel2 | Pixel3 | :
Flag Flag Flag 1
B\;lt Bit Bit |
T itted > !
S{:;:gg;phed ofala[a [1fo[of1]o[1ffoio[1]1]o]ofo[xi |1 |
Pixels | Pixell | Pixel2 | Pixel3 |

Figure 6: Flat Bit

The message is extracted by comparing the wrapper to the stegotext and noting the bit

after each comparison failure.

s. Threshold Bits

Like the flag bit protocol, an inverted bit acts as a flag for the message bit. In this case
however a certain odd number n of bits, immediately following the flag bit are used to

encode the value of the message bit. If the number of 1’s in the n bits is greater than the

15

number of 0’s then the message bit is 1. Similarly, if there are more 0’s than 1’s then the

message bit is 0. This protocol allows for error correction.

Message
Bits 191
Insertion Inlertion Insertion
Point Point Point
. ¥ v \
Original 1ol 1/o[1] 1] {ofo[1]o: 1]1]ofo] 1] 1/o[otr|1]0}1
Wrapper —— el .
Pixels | Pixell | Pixel2 | Pixel3 |
Flag Flag Flag
Bglt B\ilt Bit
Transmitted ;
Syeganographed 10;010111101'_031100110111(”}1
Pixels | Pixell | Pixel2 | Pixel3 |
(note: n = 3)

Figure 7: Threshold Bits

F. MESSAGE BIT INDEPENDENT INSERTION PROTOCOLS

The protocols in the previous section require the receiver to have both the original
wrapper file and the stegotext to extract the message. This is because the insertion point
bit(s) are selected based on the value of the message bit. Therefore the only way for the
receiver to identify the insertion points is to compare the wrapper with the stegotext. This
is entirely different from the key- or algorithm-based protocol event selection techniques
mentioned earlier.

Frequently, it is inconvenient or impossible for the receiver to have the original
wrapper file. For example, in an image downgrading scenario, it is possible for a misfeasor
to embed classified data in an image which he expects to be downgraded. Once the wrapper
image is downgraded, the original wrapper file is no longer available to be used for

comparison in an extraction algorithm. For this reason, when designing a steganographic

16

application it is preferable to use a protocol which does not rely on the availability of the

original wrapper file. The following are examples of this type of protocol.

1. Direct Bit Replacement
In this protocol, the insertion point bit is simply replaced by the message bit. This |

protocol was demonstrated in Figure 1.

2. Neighbor Parity
As with the threshold bit protocol discussed earlier, this protocol examines n

neighboring bits and modifies the insertion point bit to achieve a desired parity.

Message
Bits 19!
Insertion Insertion Insertion
Point Point Point
~ [L N
Original 1fo[1i1]o[1} 1] 1{ojo[1]0 1{1[o[o| 1] jo[of1{1jo]1
Wrapper Ll bLL
Pixels l Pixel 1 | Pixel 2 | Pixel 3 |
Transmitted N ; Y ¥
Sjteganographed 1 01101 1{11{0{1}0 1) 1{0|0{1| 1|0 1] 1|1 01
Pixels | Pixell | Pixel2 | Pixel3 |
(note: n = 3)

Figure 8: Neighbor Parity

For this example, odd parity represents 1 and even parity 0. Clearly, this technique
requires the PES to maintain at least n bit spacing between insertion points. The overall
effect of this technique is to essentially randomize the way message bits are represented.

Sometimes a message bit of 1 will be represented at the insertion point as a 0 and sometimes

asal.

17

18

III. STEGANOGRAPHIC DATA CAPACITY

A. DATA EMBEDDING DENSITY
The relationship between the size of an image file and the amount of data which can
be hidden in it is very straightforward. The steganographic data density, defined as the
number of data bits per image byte, directly determines the total amount of data which can
be hidden. The general formula for the data capacity in bytes is:
data capacity = ((W * H * bytes per pixel) * D)/ 8 bits per byte,
where W and H are the image width and height in pixels and D is the number of data bits

embedded per pixel.

B. THEORETICAL LIMITS

As described above, the number of bytes of data which can be hidden is dependent only
on the size of the image file and the density at which data is embedded. The density is, in
turn, determined by the acceptable degree of distortion as will be described in the next

section.

The amount of information which can be stored can be improved through the use of
compression. From the point of view of the steganographic algorithm the data is a stream
of bytes. There is no reason why a stream of bytes representing ASCII characters cannot be
embedded in a compressed form thereby increasing the total amount of information which

can be stored in a given image.

C. PERCEPTUAL LIMITS

In deciding on a hidden data density one must strike a balance between the amount of
image degradation and the desire to maximize the amount of data which can be stored in an
image. Increasing the data density increases the amount of degradation. The tnick is to find
the data density threshold at which an uninformed observer may notice that the image is
fuzzy. Three factors which influence this are the pixel structure, the content and texture of

the image, and the hidden data location within the image.

19

1. Pixel Structure

In any image file format which uses less than 24 bits per pixel, some provision for a
color map must be made in order for the file to be displayed on a color monitor. This is due
to the necessity of converting the pixel value to a 24 bit value for the display driver. The
most common pixel structure of this kind is 8 bits. Since an 8 bit value can only represent
256 colors, a color map is necessary to map the 256 colors to the 16,777,216 possible

colors.

Any attempt to embed data in an 8 bit pixel value will result in that pixel value pointing
to an entirely different color value in the color map. A color map in an 8 bit image file is
the result of some kind of quantization of the colors present in the image, so changing a
pixel value by even a small amount may cause a drastic change in the color of the pixel [3].

A 24 bit image file format is ideal for steganographic purposes. A 24 bit pixel is
composed of three 8 bit color channels: red, green, and blue. The number of possible colors
is very large and it is possible to change several bits without making a noticeable change in
the color. This is due to two factors. First, although the human eye can distinguish a large
number of colors under ideal conditions, viewing an altered image on a monitor without the
benefit of a reference image makes detecting small color changes unlikely. Second, while
the pixel value may be 24 bits, most personal computers and workstations do not display
24 bits of color on the monitor. The 24 bit pixels are usually mapped internally to 4, 8, or

16 bits for the display. Further, every monitor will have small differences in color

saturation, brightness, contrast, etc.

2. Content and Texture of Images

The characteristics of the image itselfis another factor which must be considered when
applying a steganographic technique. The overall variety of colors, shapes, and textures and
their relative sizes and dispositions can affect the detectability of embedded data. For
example, in Figure 9, the seagull is seen against a sky which is composed of only a few

shades of blue. Color distortion introduced in this mostly blue field will appear as specks

20

of darker or lighter blue, or even a different color, which contrasts with the blue around it

as seen in Figure 10. (Distortion has been enhanced for illustration.)

Figure 9: Seagull, 730x480, 24 bit pixels [8]

Figure 10: Seagull with 136,608 bytes of data embedded

A good choice for an image to be used as a wrapper would be one which is very busy,

i.e. contains many different shapes, colors and textures. In this type of picture, the

21

steganographic distortion will be lost in the profusion of detail. This is demonstrated in
Figure 11 and Figure 12. Figures [10] and [12] contain the same amount of embedded data,

but it is much less visible in Figure 12.

Figufe 12: Glasses with 136,608 bytes of data embedded

22

3. Hidden Data Location Within an Image

The steganographic data capacity of an image is a function of the embedding density.
In the case where less than the maximum amount of data is embedded, care must be taken
to avoid creating a line of demarcation between the area containing hidden data and the
portion of the image which has not be tampered with. In Figure 10 the hidden data is
obviously located in the bottom portion of the image.

A solution to this problem is to compute n, the number of bytes in the image divided
by the number of image bytes necessary to hold the embedded data. Then, in the embedding
algorithm, use every nth image byte. This will spread the hidden data over the entire image,
reducing its detectability. Spreading out the data in Figure 10 results in Figure 13; clearly,

a significant improvement.

Figure 13: Seagull with embedded data spread out

23

24

IV. EMBEDDED MESSAGE SURVIVABILITY

A. IMAGE PROCESSING ISSUES

Both newly created and existing images often undergo modification as a result of some
form of processing. Images can be compressed using lossy compression techniques, can be
digitally enhanced, or they can have other images or graphics overlaid on them. All forms
of ‘invasive’ processing are a threat to any steganographically embedded message.
Alteration of any of the pixels containing message bits can garble the message. To enhance
message survivability, some form of error correction is necessary.

The most frequently encountered source of image degradation is lossy compression. In
the next two sections we will examine the loss caused by the Joint Photographic Experts

Group (JPEG) compression standard and the error correction required to compensate for it.
[6]

B. JPEG COMPRESSION

The JPEG compression standard has been developed to provide efficient, flexible
compression tools. JPEG has four modes of operation designed to support a variety of
continuous-tone image applications. Most applications utilize the Baseline sequential
coder/decoder which is very effective and is sufficient for many applications. [13]

JPEG works in several steps. First the image pixels are transformed into a luminance/
chrominance color space [11] and then the chrominance component is downsampled to
reduce the volume of data. This downsampling is possible because the human eye is much
more sensitive to luminance changes than it is to chrominance changes. Next, the pixel
values are grouped into 8x8 blocks which are transformed using the discrete cosine
transform (DCT). The DCT yields an 8x8 frequency map which contains coefficients
representing the average value in the block and successively higher-frequency changes
within the block. Each block then has its values divided by a quantization coefficient and

the result rounded to an integer. During this quantization is where most of the loss caused

25

by JPEG occurs. Many of the coefficients representing higher frequencies are reduced to
zero. This is acceptable since the higher frequency data that is lost will produce very little
visually detectable change in the image. The reduced coefficients are then encoded using
Huffman coding to further reduce the size of the data. This step is lossless. The final step

in JPEG applications is to add header data giving parameters to be used by the decoder. [13]

C. JPEG EFFECTS ON IMAGE DATA

As mentioned before, embedding data in the least significant bits of image pixels is a
simple steganographic technique, but it cannot survive the deleterious effects of JPEG. To
investigate the possibility of employing some kind of encoding to ensure survivability of
embedded data it is necessary to identify what kind of loss/corruption JPEG causes in an
image and where in the image it occurs.

At first glance, the solution may seem to be to look at the compression algorithm to try
to predict mathematically where changes to the original pixels will occur. This is
impractical since the DCT converts the pixel values to coefficient values representing 64
basis signal amplitudes. This has the effect of spatially “smearing” the pixel bits so that the
location of any particular bit is spread over all the coefficient values. Because of the
complex relationship between the original pixel values and the output of the DCT, it is not
feasible to trace the bits through the compression algorithm and predict their location in the
compressed data.

Due to the complexity of the JPEG algorithm an empirical approach to studying its
effects is called for. To study the effects of JPEG, 24 bit Windows BMP format files were
compressed, decompressed, and the resulting file saved under a new filename.

The BMP file format was chosen for its simplicity and widespread acceptance for
image processing applications. For the experiments, two photographs, one of a seagull and
one of a pair of glasses (Figure 9 and Figure 11), were chosen for their differing amount of
detail and number of colors. JPEG is sensitive to these factors. To investigate JPEG’s

effects, an analysis was conducted to locate and quantify the errors introduced.

26

1. Effects on Pixels

Table 1 below shows the results of a byte by byte comparison of the original image
files and the JPEG processed versions, normalized to 100,000 bytes for each image. Here
we see that the seagull picture has fewer than half as many errors in the most significant

bits (MSB) as the glasses picture. While the least significant bits (LSB) have an essentially

equivalent number of errors.

MSB LSB

Glasses | 744 | 4032 | 10247 | 21273 | 33644 | 42327 | 27196 | 48554

Seagull | 257 991 2821 | 7514 | 15039 | 29941 | 41593 | 46640

Table 1: Errors introduced by JPEG per bit position
Table 2 shows the Hamming distance (number of differing bits) between
corresponding pixels in the original and JPEG processed files normalized to 100,000 pixels

for each image. Again, the seagull picture has fewer errors.

1-3 4-6 7-9 |10-12 | 13-15 | 16-18 | 19-21 | 22-24

Glasses | 15581 | 37135 | 30337 | 11976 | 2205 172 4 0

Seagu]] 24188 38710 17564 4631 409 43 1 0

Table 2: Hamming distances between pixels

Given the information in Table 1, it is apparent that data embedded in any or all of the
lower 5 bits would be corrupted beyond recognition. Attempts to embed data in these bits

and recover it after JPEG processing showed that the recovered data was completely

garbled by JPEG.

27

2. Error Distribution

Although JPEG causes errors throughout the image, the most severe errors, that is, the
pixels suffering the largest number of bit inversions, are located along edges or transients
in the pixel values. Figure 14 is a pixel by pixel comparison of the original seagull picture
(Figure 9) and the JPEG processed version of the same file. Each black dot indicates a pixel

which has a Hamming distance of more than 8 from the corresponding original pixel.

Figure 14: Map of errors of more than 8 bits per pixel

Given the nature of the JPEG errors, the problem of embedding the data and of
applying an error correction scheme is challenging. The fact that the lower order bits are
severely affected by JPEG indicates that data should be embedded in higher order bits, but
this will cause more degradation of the image and compromise the effectiveness of the
steganographic scheme. Also, since the number of errors is high and distributed across all
bit positions, a robust error correcting scheme is needed to protect the hidden data from
corruption. The price of robust error correction is a large overhead which must be added to

the data. This reduces the total amount of information which can be hidden.

28

D. ERROR CORRECTING SCHEMES

Since a straightforward substitution of pixel bits with data bits proved useless, a simple
coding scheme to embed one data bit per pixel byte was tried. A bit was embedded in the
lower 5 bits of each byte by replacing the bits with 01000 to code a 0 and 11000 to code a
1. On decoding, any value from 00000 to 01111 would be decoded as a 0 and 10000 to
11111 as a 1. The theory was that perhaps JPEG would not change a byte value by more
than 7 in an upward direction and 8 in a downward direction or, if it did, it would make
drastic changes only occasionally and some kind of redundancy coding could be used to
correct errors. This approach failed. JPEG is indiscriminate about the amount of change it
makes to byte values and produced enough errors that the hidden data, when extracted, was
unrecognizable. This is not surprising since the JPEG algorithm spreads the value of each
bit over many coefficient values, some of which are reduced to zero in the quantization
step.

The negative results of the first few attempts to embed data indicated that a more subtle
approach to encoding was necessary. It was noticed that, in a JPEG processed image, the
pixels which were changed from their original appearance were similar in color to the
original. This indicates that the changes made by JPEG, to some extent, maintain the
general color of the pixels. This characteristic is desirable in an algorithm for compressing
digital images; the appearance of the image should change as little as possible. To attempt
to take advantage of this, a new coding scheme was devised based on viewing the pixel as
a point in space (Figure 15) with the three color channel values as the coordinates.

The coding scheme begins by computing the distance from the pixel to the origin
(0,0,0). Then the distance is divided by a number and the remainder (r = distance mod n) is
found. The pixel value is adjusted such that its modulus is changed to a number
corresponding to the bit value being encoded. Qualitatively, this means that the length of

the vector representing the pixel’s position in three-dimensional RGB color space is

29

modified to encode information. Because the vector’s direction is unmodified, the relative

sizes of the color channel values are preserved.

Blue

4 ®R.GB)

/
7/
7/

Green
\ Red

Figure 15: A pixel as a point in space

Suppose we choose an arbitrary modulus of 42. When the bit is decoded, the distance
to the origin will be computed and any value from 21 to 41 will be decoded as a 1 and any
value from 0 to 20 will be decoded as a 0. So we want to move the pixel to a middle value
in one of these ranges to allow for error introduced by JPEG. In this case, the vector
representing the pixel would have its length modified so that the modulus is 10 to code a0
oris 31 to code a 1. It was hoped that JPEG would not change the pixel’s distance from the
origin by more than 10 in either direction thus allowing the hidden information to be
correctly decoded.

For example, given a pixel (128, 65, 210) the distance to the origin would be

computed: 4 = m - 25438 . The value of d is rounded to the nearest integer.
Next we find r = d mod 42 , which is 2. If we are coding a 0 in this pixel, the amplitude of the
color vector will be increased by 8 units to an ideal modulus of 10 (d= 262) or moved down
13 (d=241) units to code a 1. Note that the maximum displacement any pixel would suffer
would be 21. Simple vector arithmetic permits the modified values of the red, green, and
blue components to be computed. The results of using this encoding are described in the

next section.

30

Another similar technique is to apply coding to the luminance value of each pixel in
the same way as was done to the distance from origin. The luminance, y, of a pixel is
computed as y = 0.3R + 0.6G + 0.1B [11], where R, G, and B are the red, green, and blue
color values respectively. One drawback to this technique is that the range of luminance

value is only from 0 to 255 whereas the range of the distance from origin is 0 to 441.67.

E. AN EFFECTIVE CODING SCHEME

With ordinary embedding techniques which simply replace image bits with data bits,
one is forced to use an enormous amount of redundancy to achieve a suitably low error rate
after JPEG compression. Also, since the lowest few bits are so badly scrambled by JPEG,
higher order bits must be used which increases the visible distortion of the image. This is
contrary to steganography’s goal of being a covert communication channel.

The distance from the origin technique results in a lower error rate, but requires
additional redundancy to reduce the error rate to a point where recognizable text can be
recovered. Specifically, the average displacement by JPEG of pixels in the seagull picture
[Figure 9] with respect to the origin is 2.36. Theoretically, if a modulus of 62 is assumed,
the number of pixels displaced by 30 (enough to cause an error) is 3100 or 0.8678%. Given

this figure and applying triple redundancy in embedding data (i.e. embed each bit three

times in a row) yields an error rate of p* +3p*(1-p) = (.008678)> + 3(0.008678)2(0.991322)
= 0.000225 per bit, where p is the probability of a bit error. This would yield an error rate

of: 1-(1- 0.000225)8 =0.001799 per byte.

In practice, however, utilizing the encoding described in the above example will not
produce the accuracy as calculated. The problem lies in the nature of the effect JPEG has
on an image. When a pixel is modified to encode a bit value, the difference in its value with
respect to surrounding pixels changes. JPEG is sensitive to transients between adjacent
pixels, i.e. the greater the number and size of transients, the greater the number of errors
introduced by JPEG. Thus, the very act of encoding data into pixels generates an increase

in the severity of distortion and results in garbling of the embedded data.

31

This characteristic of JPEG makes it a very good anti-steganography tool, but does not
preclude steganographic embedding entirely. With a high repetitive redundancy factor,
some text may be embedded and extracted from a JPEG processed image. Using distance
to the origin encoding and repeating each bit 5 times, approximately 30% of the text can be

recovered without error.

32

V. DISCUSSION AND CONCLUSIONS

A. STEGANOGRAPHY FOR ILLICIT EXFILTRATION

As was seen in the previous chapters, steganography is relatively simple to implement
and is capable of hiding a significant amount of information in an image file. Until recently,
the very notion of digital steganography was not known or was not perceived as a threat.
The increase in communication bz.mdwidthS has encouraged a manifold increase in the
number of digital images being transmitted and stored. In light of this, steganography must
be considered when developing a computer security policy.

Although steganography is considered by many to be a form of covert channel, in the
strictest sense it is not, A covert channel uses mechanisms in a computer system for a
purpose they were not intended [1]. For example, the amount of disk storage available can
be modulated by a process operating at a high security level. A process at a lower security
level can monitor the effects of this modulation and thereby receive information from the
higher security level. In contrast, steganography can exploit a trusted subject’s privileges
in a multi-level system. Specifically, those privileges which allow it to write to a lower
classification domain. In the context of an image downgrading system where a human
operator is using a trusted subject to change the classification of images, steganography
takes advantage of the operator’s inability to discern or identify the distortion caused by
embedded data. Since human perception is not sufficient in this case to prevent flow of data
to lower classification domains, additional controls are called for.

The key to preventing steganographic exfiltration of data is a strong integrity control
system. One method which may be used to protect the integrity of image files is an
embedded checksum or message digest [4]. A checksum or message digest would be
computed, encrypted and steganographically embedded in an image. Any tampering with
the image would render the embedded integrity seal unrecoverable. (Note that encryption
keys and methods may need to be protected using a high assurance security policy

enforcement mechanism.)

33

Another method of protecting a system against steganographic exfiltration of data is to
employ anti-steganography measures when handling image files. Transform based lossy
compression, e.g. JPEG, is very effective in garbling embedded data, but cannot be relied
upon for complete protection. It is possible for embedded data to be encoded to resist the
effects of the distortion. The amount of data hidden in such a way would be small compared
to the size of the image due to the large amount of error correcting data which must be

added to the information being embedded.

B. STEGANOGRAPHIC APPLICATIONS

Steganography is a relatively simple concept and implementations of steganography
are not difficult to develop with commonly available tools, e.g. C++, awk, shell scripts, etc.
A competent programmer could write a steganographic application and an accompanying
shell script to embed data to be exfiltrated in all image files available to him. This could be
accomplished in batch mode to spread out the processing load this would impose on a
system.

The threat of Trojan horses to system security is well documented. Any application
which handles files which are suitable for steganography could contain code to hide data in
the files. An example of this is JPEG applications. Since, in the normal course of its
processing, JPEG introduces distortion into an image, a Trojan horse steganography
algorithm would have an extra measure of covertness i.e. an observer would assume the

image distortion is due entirely to JPEG processing.

34

VI. SUGGESTIONS FOR FURTHER RESEARCH

A. AN UNEXPLORED DISCIPLINE

This thesis explores only a small part of the science of steganography. As a new
discipline, there is a great deal more research and development to do. The following
sections describe areas for research which were offshoots of, or tangential to, our main

objectives.

1. Detecting Steganography in Image Files

Can steganography be detected in image files? This is a difficult question. It may be
possible to detect a simple steganographic technique by simply analyzing the low order bits
of the image bytes. If the steganographic algorithm is more complex, however, and spreads
the embedded data over the image in a random way or encrypts the data before embedding,
it may be nearly impossible to detect.

One method of detecting steganography in images may be to examine the colors in an
image. If, in a 24 bit image, there are a great many colors which differ by only a small

amount, it may indicate tampering. This theory is based on the idea that most images use a
very small fraction of the 224 colors available. If a steganographic technique uses the lower
two bits of each byte, then any pixel could be changed by at most a factor of 2%, Assuming
that most images use a particular color hundreds or thousands of times, there could be 26

variations of that color all within 2% values of each other. A 2% change in a pixel’s color
value is imperceptible, so a clump of colors like this would be suspicious. Of course, it is
possible that the original image was created with such a fine gradation of color, but this is

probably unlikely. A survey of many images from various sources could provide insight on

this point.

33

2. How Widespread is the Use of Steganography?

If a technique or set of techniques could be devised to detect steganography, it would
be interesting to conduct a survey of images available on the Internet to determine if
steganography is used, by whom, and for what purposes. Steganographic applications are
available on the Internet, but it is not known if they are being used. Moreover, there are

probably other privately developed and used applications in existence.

3. Steganography on the World Wide Web
The World Wide Web (WWW) makes extensive use of inline images. There are

literally millions of images on various web pages worldwide. It may be possible to develop
an application to serve as a web browser to retrieve data embedded in web page images.
This “stego-web” could operate on top of the existing WWW and be a means of covertly

disseminating information.

4. Steganography in Printed Media
If data is embedded in an image, the image printed, then scanned and stored in a file,
can the embedded data be recovered? This would require a special form of steganography

to which could allow for inaccuracies in the printing and scanning equipment.

5. Anti-Steganography Measures

As was seen in this thesis, JPEG garbles any unencoded steganographically embedded
data. Also, palettization (mapping a large number of colors in an image to a smaller subset
of colors) of an image will render it unsuitable for steganography [3]. It is likely, as with
JPEG, that some means may be employed to prevent loss of steganographically embedded
data when its wrapper file is processed. The question remains open as to what is the most

effective anti-steganography tool or set of tools.

36

10.

11.

12.

13.

14.

LIST OF REFERENCES

Amoroso, Edward, Fundamentals of Computer Security Technology, PTR Prentice
Hall, 1994.

Brassil, J., Low, S., Maxemchuk, N., O’Garman, L., “Electronic Marking and
Identification Techniques to Discourage Document Copying,” IEEE Infocom 94, pp
1278-1287.

Cha, SD., Park, GH, and Lee, HK, “A Solution to the On-Line Image
Downgrading Problem,” in Proceedings of the Eleventh Annual Computer Security
Applications Conference, New Orleans, LA, pp. 108-112, December 1995.

Denning, Dorothy E., “Cryptographic Checksums for Multilevel Database
Security,” Proceedings of the 1984 Symposium on Security and Privacy, 29 Apr - 2
May, 1984, Oakland, CA, pp. 52-61.

Gasser, Morrie, Building A Secure Computer System, Van Nostrand Reinhold, New
York, 1988.

Joint Photographic Experts Group (JPEG) Compression for the National Imagery
Transmission Format Standard, MIL-STD-188-198A, December 1993.

Kahn, D., The Codebreakers, MacMillan Company, 1967.
Kodak, http://www.kodak.com:80/digitallmaging/samples/varietyPix.shtml.

Kurak, C., McHugh J., “A Cautionary Note on Image Downgrading,” Proceedings
of the 8th Annual Computer Security Applications Conference, 1992, pp 153-159.

Lockstone, Keith, “A Class of Steganographic Protocols,” Paper posted to the
USENET newsgroup sci.crypt.research, 29 Nov. 1994.

Pennebaker, William B., Mitchell, Joan L., JPEG Still Image Compression
Standard, Van Nostrand Reinhold, New York, 1993.

Simmons, G.J., “The Prisoner’s Problem and the Subliminal Channel,” Advances in
Cryptology: Proceedings of Crypto 83, Plenum Press, 1984, pp. 51-67.

Wallace, Gregory K., “The JPEG Still Picture Compression Standard, ”
Communications of the ACM, Vol. 34, No. 4, April 1991.

Walton, S., “Image Authentication for a Slippery New Age,” Dr. Dobbs Journal, No.
229, April ‘95, pp. 18-26.

37

APPENDIX: SOURCE CODE

All code is written in C++ and compiled using the GNU project C++ Compiler (v2.4)

A. GENERIC STEGO EMBEDDING PROGRAM

#include <iostream.h>
#include <fstream.h>
#include <math.h>

#include “stego_functions.h”

/* 21 Feb - This stego program embeds data from a textin file into a
infile and stores the result as outfile. The data bits are
embedded in the lower density (a user specified parameter)
bits of each byte of the infile. */

fstream infile, //infile is the 24 bit . BMP file
outfile, // outfile is the modified 24 bit . BMP file
textin; // textin is the text file to be embedded in the image file

char image_file[32], steg_file[32], textsource_file[32]; //file names
unsigned char old_textbyte, hide_mask, image_byte, full_short, data_hide;

int x, // 1oop counter
bits_left; // number of bitr.-which have been read from the data file,
// but still need to be embedded in the image file

unsigned short density, steg_head2, // density at which data is embedded, placed
// in header for use during extraction

textbyte;

unsigned long text_bytes, / number of bytes in the data file
steg_headl, // number of bytes embedded in the image, placed
// in header to allow for extraction
hide, // hold lower density bits of byte to be embedded

full_long;

bmpheader header; // This is the current infile header.

39

typedef struct {
unsigned short blue, green, red; }
color;

// Function prototypes
void bitslice(unsigned short inbyte, unsigned short bitarray[8]);
void insert_1bit(color& pixel, unsigned short textbit),

main()
{
// read in names of image file and output file
cout << “\n”;
cout << “Enter name of the image file : ;
cin >> image file;
cout << “Enter name of the textsource file : “;
cin >> textsource_file;
cout << “\n”; :
cout << “Enter name of the output/steg file : “;
cin >> steg_file;
cout << “\n”,

// Open the input image file and read the header
cout << “\n”;

infile open(image_file, ios::in);

read bmp_header(infile, header);

cout << “File_size: “ << header file_size << “\n’;

cout << “Offset bits: “ << header.offset_bits << “\n’,

cout << “Size: “ << header.size << ‘\n’;

cout << “Width: “ << header.width << ‘\n’;

cout << “Height: “ << header.height << “\n’;

cout << “Bit count: ¢ << header.bit_count << “\n’;

cout << “Image size: “ << header.image_size << ‘\n’,

cout << “X pixels: “ << header.x_pixels << “\n’;

cout << “Y pixels: “ << header.y_pixels << ‘\n’;

cout << “Number colors: “ << header.number_colors << “\n’;
cout << “Colors important: “ << header.colors_important << ‘\n’;
cout << “\n”;

outfile.open(steg_file, ios::out),

// Write the header to the output file
write_bmp_header(outfile, header),

40

// Now that the header is written, we are ready to insert the data

// bits into the image bytes as folows:

// 1. First, count how many bytes are in the data file.

// 2. Embed the data byte count in the image bytes.

// 3. Read in a data byte.

// 4. Bitslice the byte into an array of its component bits

// 5. Insert the eight data bits into the image bytes and write the bytes to
/[the output stego image file file. The number of data bits/image byte
/| is contained in the density variable.

// 6. Get another text byte

textin.open(textsource_file, ios::in);

cout << “textsource file is open.\n\n”;

text_bytes = byte_count(textin),

cout << “The input text file has “ << text_bytes <<* bytes.\n";

// Reset the input text file by closing it then opening it.
textin.close();
textin.open(textsource_file, ios::in);

// Prompt the user for density at which data should be embedded

cout << “Enter the density you would like to use for the embedding > “;
cin >> density; // Embed density bits per byte

bits_left = 8; // Bits left to embed

// Make sure the data will fit

if (((text_bytes*8)/density + 25) < header.image_size) {

// Embed the number of data bytes to be hidden and the density. These

// values will constitute the stego ‘header’ to allow recovery of the data.
// The header will be embeded with a density of 2. (2 is arbitrary)

// So a total of 16 + 8 = 24 image bytes will be used for the stego header.
steg_headl = text_bytes;

steg_head2 = density;
cout << “\nData length: “ << steg_head1 <<*“ Density: “ << density << “\n’;

cout << “\n”’;
for (x=0; x<16; ++x) { //loop to write the steg_head1 value
full long=0;
hide = 3;
hide = hide & steg_headl;
// Hide now contains lower 2 bits of steg_head1

full _long = full_long | hide;
infile.read((unsigned char*) &image_byte, 1),

-4l

image byte =image_byte >>2;

image byte = image_byte << 2;

image byte = image_byte | full _long; // Embed bits
outfile.write((unsigned char*) &image_byte, 1),

steg_headl = steg_headl >>2; // get rid of lower 2 bits
}

for (x=0; x<8; ++x) { // 1oop to write the steg_head2 value
full long=0;

hide = 3;

hide = hide & steg_head2;
// Hide now contains lower 2 bits of steg_head2

full long = full_long | hide;

infile.read((unsigned char*) &image byte, 1),
image_byte = image_byte >> 2;

image byte =image_byte <<2;

image_byte = image_byte | full_long; / Embed bits
outfile. write((unsigned char*) &image_byte, 1),

steg_head2 = steg_head2 >> 2; // get rid of lower 2 bits

}

hide_mask = (unsigned short) pow(2, (double) density) - i;

// Insert bits into the image bytes at the specified density
while (!textin.eof()) {
textbyte =0;
textin.read((unsigned char*) &textbyte, 1); // Read a text byte
textbyte = textbyte >> 8;
if (bits_left < density) { / We must put the leftover bits at the end
// of the new textbyte
//shift left to accommodate old bits
textbyte = textbyte << bits_left;
textbyte = textbyte | old_textbyte; // tack on the old bits
bits_left = bits_left + 8; // The old bits + the new bits

}

while (bits_left >= density) {
full_short =0;
data_hide = hide_mask;
data_hide = data_hide & textbyte;
// Hide now contains lower density bits of textbyte

full_short = full_short | data_hide;

42

image_byte =0,

infile.read((unsigned char*) &image_byte, 1),

image_byte = image_byte >> density; // Clear lower density bits

image_byte = image_byte << density;

image_byte = image_byte | full_short, // Embed density bits
outfile. write((unsigned char*) &image_byte, 1);

textbyte = textbyte >> density; //get rid of lower density bits

bits_left = bits_left - density;

old_textbyte = textbyte; // save any remaining bits

// End while

// At this point there are less than density bits to embed.

// There are two possibilities: bits_left =0 or bits_left > 0

// In any case a new textbyte must be read.

// End while

// At end of input file so just continue to write pixels without modification.
~ while (linfile.eof()) {

infile.read((unsigned char*) &image_byte, 1);

outfile. write((unsigned char*) &image_byte, 1);

}

} // End if data will fit

else {
cout << “Data file is too big to fit into the image.\n”;

} // End else data will fit

outfile.close();
textin.close();
infile.close();

return O; // End of main()

)

// **

// This function takes a byte and breaks it into its component bits.
// The bits are stored in bitarray with the LSB in bitarray{0].

void bitslice(unsigned short inbyte, unsigned short bitarray[8]) {
inti;
for (i=0; i<8; ++i) {
bitarray[i} = 0,
if (inbyte & 1) {
bitarray[i] = 1;

43

o '

inbyte >> 1;

}

else inbyte >> 1;

}
} // End of bitslice()

//**

// This function takes a pixel structure and a text bit,

// determines which is the largest color component of the
// pixel, and inserts the bit in that color component.

// Tt hides one bit inside one pixel.

void insert_1bit(color& pixel, unsigned short textbit) {
unsigned short* big = &pixel.red;

if (pixel.red >= pixel.green) big = &pixel.red,
else {

big = &pixel.green; }

if (*big < pixel.blue) big = &pixel blue;

if (textbit == 1) { *big = *big | 1; } // Makes the LSB 1
else { *big = *big >> 1,

*big = *big << 1, } // Makes the LSB 0

} // End of function insert_1bit()

44

B. GENERIC STEGO EXTRACTION PROGRAM

/* Stego Extraction Program

21Feb - This version of Extract will extract data hidden at any density (1-7).

The user will be prompted for the density. If 0 is entered, the
program will try to find the stego header to get the density and
the number of hidden bytes. */

#include <iostream.h>
#include <fstream.h>
#include <math.h>

#include “stego_functions.h”
#define P13.14159265

fstream infile, //infile is the 24 bit BMP file with embedded text
outfile; // outfile is the extracted text file

char steg_file[32], data_out_file[32]; // file names

unsigned char stegin, mask, hidden_byte, inbyte, upperl, upper2, upper3,
upper4, orphan_bits, densin;

int x; //loop counter
unsigned short density, leftover_bits, bytes_recovered;
unsigned long steg_bytes;

bmpheader header; // This is the current infile header.

typedef struct {
unsigned short blue, green, red; }
color;

// Function prototypes

void bitslice(unsigned short inbyte, unsigned short bitarray[8]);
void insert_1bit(color& pixel, unsigned short textbit);

main()

// Get the name of the input image file containing stego data (steg_file)
// and the name of the file in which the extracted data will be stored.

cout << ‘“\n”’;

45

cout << “Enter the stego image file name: “;

cin >> steg_file;

cout << “Enter a file name for the extracted data: «;
cin >> data_out_file;

infile.open(steg_file, ios::in);
read bmp_header(infile, header);

cout << “\nStego image file information: \n\n”;

cout << “File_size: “ << header file_size << ‘\n’;

cout << “Offset bits: “ << header.offset_bits << ‘\n’;

cout << “Size: “ << header.size << ‘\n’;

cout << “Width: “ << header.width << ‘\n’;

cout << “Height: “ << header.height << ‘\n’;

cout << “Bit count: “ << header.bit_count << ‘\n’;

cout << “Image size: “ << header.image_size << ‘\n’;

cout << “X pixels: “ << header.x_pixels << ‘\n’;

cout << “Y pixels: “ << header.y_pixels << “\n’;

cout << “Number colors: “ << header.number_colors << ‘\n’;
cout << “Colors important: “ << header.colors_important << ‘\n’;

infile.close(),

infile.open(steg_file, i0s::in);

// We have reset the stego file and now are ready to read the
// stego header.

// Now we must extract the stego header consisting of the number of bytes
// of hidden data and the density at which it was hidden.
// Get the number of bytes...
steg_bytes = 0; // steg_bytes will contain the number of hidden bytes
for (x=0; x<16; ++x) {
infile seekg((69 -x), ios::beg);
steg_bytes = steg_bytes << 2; // Make room for the next 2 bits
infile.read((unsigned char*) &stegin, 1);
stegin = stegin & 3; // Get rid of all bits above the lower two.
steg_bytes = steg_bytes | stegin; / Put the bits on the bottom of

/1 steg_bytes
}
// steg_bytes now contains the number of hidden bytes in the image.
// Now get the density....
density = 0;
for (x=0; x<8; ++x) {

46

infile.seekg((77 -x), i0s::beg);

density = density << 2; // Make room for the next 2 bits
infile.read((unsigned char*) &densin, 1),

densin = densin & 3; // Get rid of all bits above the lower two.
density = density | densin; // Put the bits on the bottom of density

}

// density now contains the density value of the hidden data

cout << “\nThe hidden data is “ << steg_bytes << “ bytes of data.\n”;
cout << “The hidden data density is “ << density << “ bits per byte.\n";
cout << “\n”; '

// The stego header is now recovered and stored in steg_bytes and density

outfile.open(data_out file, ios::out); // Open the file that will
// hold the extracted data.

// We need to be at the first byte containing stego bits.

// The image header and the stego header are contained in the

// first 78 bytes so we go to the 79th byte which contains the

// 1east significant bit(s) of the first byte of the hidden data.

// The seekg value is an offset from the first byte of the file.

infile.seekg(78, ios::beg);

// Begin a loop to read all the bytes containing data.
bytes_recovered = 0,

leftover_bits = 0;

while (bytes_recovered < steg_bytes) {

switch (density) {

case 1: // Density 1111111111311111111111111111111111111111111
mask =1;
hidden_byte = 0;
for (x=0; x<8, ++x) {

infile.read((unsigned char*) &inbyte, 1);

inbyte = inbyte & mask;

hidden_byte = hidden_byte | (inbyte <<x);

}
outfile. write((unsigned char*) &hidden_byte, 1);
++bytes_recovered,

break;

case 2. // Density 22

47

mask = 3;
hidden_byte = 0;
for (x=0; x<8; x=x+12) {
infile.read((unsigned char*) &inbyte, 1),
inbyte = inbyte & mask;
hidden_byte = hidden_byte | (inbyte <<x);
}
outfile.write((unsigned char*) &hidden_byte, 1);

++bytes_recovered,
break;

case 3: // Density 33
mask =7,
hidden_byte = 0;
switch (leftover bits) {
case 0:
infile.read((unsigned char*) &inbyte, 1),
inbyte = inbyte & mask;

// Store the lower 3 bits
hidden_byte = hidden_byte | inbyte;

// Get another byte
infile.read((unsigned char*) &inbyte, 1);
inbyte = inbyte & mask;

// Store the middle 3 bits
hidden_byte = hidden_byte | (inbyte << 3);

// Get another byte
infile.read((unsigned char*) &inbyte, 1);
upper2 = inbyte & 3;

// Store the upper 2 bits
hidden_byte = hidden_byte | (upper2 << 6),

// Orphan bit is bit 2
orphan_bits = inbyte & 4;
leftover_bits = 1;
outfile. write((unsigned char*) &hidden_byte,1);
++bytes_recovered;
break;

case 1:

hidden_byte = orphan_bits >> 2; // Low bit now
// stored

infile.read((unsigned char*) &inbyte, 1);

inbyte = inbyte & mask;
// Store the bits 1,2,3

48

hidden_byte = hidden_byte | (inbyte << 1);
infile.read((unsigned char*) &inbyte, 1);
inbyte = inbyte & mask;

// Store the bits 4,5,6
hidden_byte = hidden_byte | (inbyte << 4);
infile.read((unsigned char*) &inbyte, 1);
upperl = inbyte & 1;

// Store the high bit
hidden_byte = hidden_byte | (upperl <<7);
orphan_bits = inbyte & 6; / Orphan bits are

// bits 1 and 2
leftover bits = 2;
outfile. write((unsigned char*) &hidden_byte,1);
++bytes_recovered;
break;

case 2:
hidden_byte = orphan_bits >> 1; // Low bit now

// stored
infile.read((unsigned char*) &inbyte, 1);
inbyte = inbyte & mask;

// Store the bits 2,3,4
hidden_byte = hidden_byte | (inbyte << 2);
infile.read((unsigned char*) &inbyte, 1),
inbyte = inbyte & mask;

// Store the bits 5,6,7
hidden_byte = hidden_byte | (inbyte <<5);
leftover_bits = 0;

outfile. write((unsigned char*) &hidden_byte,1);
++bytes_recovered,
break;

default: cout << “\n Invalid leftover. Aborting!\n”;
return 0,

} // End of leftover switch
break;

case 4: // Density 44
mask = 15;

hidden_byte = 0;

infile.read((unsigned char*) &inbyte, 1);

inbyte = inbyte & mask;

49

hidden_byte = hidden_byte | (inbyte << 4);
infile.read((unsigned char*) &inbyte, 1);

inbyte = inbyte & mask;

hidden_byte = hidden_byte | inbyte;
outfile.write((unsigned char*) &hidden_byte, 1),
++bytes_recovered,

case 5: // Density 555
mask =31;
hidden_byte = 0,
switch (leftover bits) {
case O:
infile. read((unsigned char*) &inbyte, 1);
inbyte = inbyte & mask;
// Store the lower 5 bits
hidden_byte = hidden_byte | inbyte;
// Get another byte
infile.read((unsigned char*) &inbyte, 1),
// Store the upper 3 bits
upper3 = inbyte & 7,
hidden_byte = hidden_byte | (upper3 << 5);
orphan_bits = (inbyte & 24) >> 3;
// Orphan bits are bits 3,4
leftover_bits = 2;
outfile.write((unsigned char*) &hidden_byte,1);
++bytes recovered,
break;

case 1:

hidden_byte = orphan_bits; //Low bit now stored
infile.read((unsigned char*) &inbyte, 1),
inbyte = inbyte & mask;

// Store the bits 1,2,3,4,5
hidden_byte = hidden_byte | (inbyte << 1);
infile.read((unsigned char*) &inbyte, 1),
upper2 = inbyte & 3;

// Store the bits 6,7
hidden_byte = hidden_byte | (upper2 << 6);
orphan_bits = (inbyte & 28) >> 2;
// Orphan bits are bits 2,3,4. Right justify
leftover_bits = 3;
outfile. write((unsigned char*) &hidden_byte,1);
++bytes_recovered,

50

break;

case 2:
hidden_byte = orphan_bits;

// Low 2 bits now stored
infile.read((unsigned char*) &inbyte, 1),
inbyte = inbyte & mask;

// Store the bits 2,3,4,5,6
hidden_byte = hidden_byte | (inbyte <<2);
infile read((unsigned char*) &inbyte, 1),
upperl = inbyte & 1;

// Store the bit 7
hidden_byte = hidden_byte | (upperl <<7);

// Pull out orphan bits and right justify
orphan_bits = (inbyte & 30) >> 1;
leftover bits = 4,
outfile write((unsigned char*) &hidden_byte, 1)
++bytes_recovered;
break;

case 3:
hidden_byte = orphan_bits;

// Low 3 bits now stored
infile read((unsigned char*) &inbyte, 1);
inbyte = inbyte & mask;

// Store the bits 3,4,5,6,7
hidden_byte = hidden_byte | (inbyte <<3);
leftover_bits = 0;
outfile. write((unsigned char*) &hidden_byte, 1),
++bytes_recovered; '
break;

case 4.
hidden_byte = orphan_bits;
// Low 4 bits now stored
infile read((unsigned char*) &inbyte, 1);
upper4 = inbyte & 15;
// Store the bits 2,3,4,5,6
hidden_byte = hidden_byte | (upper4 << 4),
//pull out orphan bit and right justify it
orphan_bits = (inbyte & 16) >> 4;
leftover_bits = 1;
outfile write((unsigned char*) &hidden_byte,1);

51

++bytes_recovered,
break;

default; cout << “\n Invalid leftover. Aborting!\n”;
return O,

} // End of leftover switch
break;

case 6: // Density 66
mask = 63;
hidden_byte = 0,
switch (leftover_bits) {
case O:

infile.read((unsigned char*) &inbyte, 1),
inbyte = inbyte & mask;

// Store the lower 6 bits
hidden_byte = hidden_byte | inbyte;

// Get another byte
infile.read((unsigned char*) &inbyte, 1);
upper2 = inbyte & 3;

// Store the upper 2 bits
hidden_byte = hidden_byte | (upper2 << 6);
orphan_bits = (inbyte & 60) >>2;

// Orphan bits are bits 2,3,4,5
leftover bits = 4,
outfile. write((unsigned char*) &hidden_byte,1);
++bytes_recovered;
break;

case 2:
hidden_byte = orphan_bits;

// Low 2 bits now stored
infile.read((unsigned char*) &inbyte, 1);
inbyte = inbyte & mask; // 6 bits

// Store the bits 2,3,4,5,6,7
hidden_byte = hidden_byte | (inbyte << 2);
leftover bits = 0;
outfile. write((unsigned char*) &hidden_byte,1);
++bytes_recovered,
break;

case 4:

52

hidden_byte = orphan_bits;

// Low 4 bits now stored
infile.read((unsigned char*) &inbyte, 1);
upper4 = inbyte & 15;

» // Store the bits 4,5,6,7
hidden_byte = hidden_byte | (upper4 << 4);

//Pull out orphan bits 4,5 and right justify it
orphan_bits = (inbyte & 48) >> 4;
leftover bits = 2;
outfile write((unsigned char*) &hidden_byte,1);
++bytes_recovered,
break;

default: cout << “\n Invalid leftover. Aborting!\n”;
return O;

} // End of leftover switch
break;

case 7. // Density 777
mask = 127,
hidden_byte = 0;
switch (leftover_bits) {
case 0:
infile.read((unsigned char*) &inbyte, 1),
inbyte = inbyte & mask;

// Store the lower 7 bits
hidden_byte = hidden_byte | inbyte;

// Get another byte
infile.read((unsigned char*) &inbyte, 1),
upperl = inbyte & 1;

// Store the upper bit
hidden_byte = hidden_byte | (upperl <<7);
orphan_bits = (inbyte & 254) >> 1;

// Orphan bits are 1,2,3,4,5,6,7
leftover_bits = 7,
outfile. write((unsigned char*) &hidden_byte,1);
++bytes_recovered;
break;

case 7:

hidden_byte = orphan_bits;
// Low 7 bits now stored

53

infile.read((unsigned char*) &inbyte, 1);
upperl = inbyte & 1;

// Store the upper bit
hidden_byte = hidden_byte | (upperl << 7),
orphan_bits = (inbyte & 254) >> 1,
leftover bits =7,
outfile. write((unsigned char*) &hidden_byte, 1),
++bytes_recovered,
break;

case 2:

hidden_byte = orphan_bits >> 1

// Low bit now stored
infile.read((unsigned char*) &inbyte, 1);
inbyte = inbyte & mask;

// Store the bits 2,3,4
hidden_byte = hidden_byte | (inbyte << 2);
infile.read((unsigned char*) &inbyte, 1);
inbyte = inbyte & mask;

// Store the bits 5,6,7
hidden_byte = hidden_byte | (inbyte << 5);
leftover_bits = 0,
outfile. write((unsigned char*) &hidden_byte, 1),
++bytes_recovered;
break;

default: cout << “\n Invalid leftover. Aborting!\n”;
return O;

} // End of leftover switch

break;

default: cout << “Invalid density! Aborting.\n”;
return O

} // End density switch

if (infile.eof()) return 0; // Don’t let it go beyond the end of the file.
} .// End while bytes_recovered

return O;

}

54

//**

// This function takes a byte and breaks it into its component bits.
// The bits are stored in bitarray with the LSB in bitarray[0].

void bitslice(unsigned short inbyte, unsigned short bitarray[8]) {
inti;

for (i=0; i<8; ++1) {
bitarray[i] = 0;

if (inbyte & 1) {
bitarray[i] = 1,
inbyte >> 1,

}

else inbyte >> 1,

}
} // End of bitslice()

U**

// This function takes a pixel structure and a text bit,

// determines which is the largest color component of the
// pixel, and inserts the bit in that color component.

// 1t hides one bit inside one pixel.

void insert_1bit(color& pixel, unsigned short textbit) {
unsigned short* big = &pixel red;

if (pixel.red >= pixel.green) big = &pixel.red,
else {

big = &pixel.green;}

if (*big < pixel.blue) big = &pixel blue;

if (textbit == 1) { *big = *big | 1; } // Makes the LSB 1
else { *big = *big >> 1;
*big = *big << 1; } // Makes the LSB 0

} // End of function insert_1bit()

55

C. IMAGE FILE COMPARISON PROGRAM

#include <iostream.h>
#include <fstream.h>
#include “stego_functions.h”

/* 21 Feb 96 - This program compares 2 image files, filel and file2, and finds
the Hamming distance between each pixel. The 2 files must be
exactly the same size. It produces an error map file which
displays the Hamming distances as color coded pixels.

This program is used to look at the errors caused by JPEG
or by a steganographic program. */

fstream filel file2, // 24 bit BMP files to be compared
mapfile, // 24 bit . BMP error map file

char file_1[32], file_2[32], errormap[32]; //file names

unsigned char flbyte b, flbyte_g, flbyte_r, f2byte b, f2byte_g, fZbyte_r,
// blue, green and red pixel values for filel and file2
max = Oxff, min = 0x00, mid = 0xO0f, white = Oxff,
// color channel values

int x,y, //loop counters
error_pixels, // number of overall pixels which differ
one 3_diff =0, four_6_diff =0, seven_9_diff = O,ten_12_diff =0,
thirteen_15_diff = 0, sixteen_18_diff = 0, nineteen_21_diff =0,
twentytwo 24 diff = 0;
// number of pixels which differ by these numbers of bits

unsigned short diff b, diff r, diff g, / number of bits differing in each
// color channel
intermediate_diff, total_diff; // total number of bits differing in
// each pixel

bmpheader headerl,header2;

// Function prototypes
unsigned short bits_different(unsigned char bytel, unsigned char byte2),

main()

{

// read in names of filel, file2, and the errormap file
cout << “\n”;

56

cout << “Enter name of file #1 : ;

cin >> file_1;

cout << “Enter name of file #2 : ;

cin >> file_2;

cout << “Enter a filename for the errormap : “;
cin >> errormap;

cout << “\n”;

// Open filel and read the header
filel.open(file_1, ios::in);
read_bmp_header(filel, headerl),

cout << “File # 1 : “ <<file 1 <<‘\n’;

cout << “File_size: “ << headerl file_size << ‘\n’;

cout << “Offset bits: “ << header1.offset_bits << “\n’;

cout << “Size: “ << headerl.size << ‘\n’;

cout << “Width: « << headerl.width << ‘\n’;

cout << “Height: “ << header].height << “\n’;

cout << “Bit count: “ << header1.bit_count << ‘\n’;

cout << “Image size: “ << headerl.image_size << ‘\n’;

cout << “X pixels: “ << header].x_pixels << ‘\n’;

cout << “Y pixels: “ << headerl.y_pixels << “\n’;

cout << “Number colors: “ << headerl.number_colors << “\n’;
cout << “Colors important: “ << header1.colors_important << “\n’;
cout << “\n”;

// Open file2 and read the header
file2.open(file_2, ios::in),
read_bmp_header(file2, header2);

cout << “File #2 : “ <<file 2 <<‘\n’;

cout << “File_size: << header2 file_size << “\n’;

cout << “Offset bits: “ << header2.offset_bits << “\n’;

cout << “Size: “ << header2.size << ‘\n’;

cout << “Width: “ << header2 width << ‘\n’;

cout << “Height: “ << header2.height << ‘\n’;

cout << “Bit count: “ << header2.bit_count << ‘\n’;

cout << “Image size: << header2.image_size << ‘\n’;

cout << “X pixels: “ << header2.x_pixels << ‘\n’;

cout << “Y pixels: “ << header2.y_pixels << ‘\n’;

cout << “Number colors: “ << header2.number_colors << ‘\n’;
cout << “Colors important: “ << header2.colors_important << “\n’;
cout << “\n”;

57

/* We are now at the beginning of the pixels */

// Check to see if the number of pixel bytes is the same.
if (headerl.image_size == header2.image_size) {

// They are equal so the comparison can be made

mapfile.open(errormap, ios::out);
// Write the header to the output file
write_bmp_header(mapfile, headerl);

error_pixels = 0;

for (y = 0; y < header1.image_size; y=y+3)
{

filel.read((unsigned char*) &flbyte b, 1);
file2.read((unsigned char*) &f2byte_b, 1),
filel.read((unsigned char*) &flbyte g, 1);
file2.read((unsigned char*) &f2byte_g, 1),
filel.read((unsigned char*) &flbyte r, 1);

file2.read((unsigned char*) &f2byte r, 1);

if ((flbyte_b !=f2byte_b) || (f1byte_g !=f2byte_g) || (flbyte_r != f2byte 1))
{
++error_pixels;
diff b = bits_different(flbyte_b, f2byte b);
diff g = bits_different(flbyte_g, f2byte_g);
diff r = bits_different(flbyte_r, f2byte_r);
intermediate_diff = (diff_b + diff g + diff_r);
if (intermediate_diff <= 1)
total _diff = 0;
else
total_diff = (intermediate_diff - 1) / 3;
switch (total_diff)
{

// 1, 2, or 3 bits differ
case 0 : mapfile. write((unsigned char*) &min, 1),
mapfile.write((unsigned char*) &min, 1),
mapfile write((unsigned char*) &max, 1);
++one_3_diff,

break;

// 4, 5, or 6 bits differ
case 1 : mapfile.write((unsigned char*) &min, 1),
mapfile write((unsigned char*) &max, 1);
mapfile write((unsigned char*) &max, 1),

58

++four_6_diff,
break;
/17, 8, or 9 bits differ
case 2 : mapfile.write((unsigned char*) &max, 1),
mapfile write((unsigned char*) &min, 1),
mapfile write((unsigned char*) &max, 1),
++seven_9_diff;
break;
// 10, 11, or 12 bits differ
case 3 : mapfile. write((unsigned char*) &min, 1);
mapfile. write((unsigned char*) &max, 1),
mapfile write((unsigned char*) &min, 1);
++ten_12_diff,
break;
// 13, 14, or 15 bits differ
case 4 : mapfile write((unsigned char*) &max, 1);
mapfile write((unsigned char*) &max, 1),
mapfile write((unsigned char*) &min, 1);
++thirteen_15_diff;
break;
// 16, 17, or 18 bits differ
case 5 : mapfile.write((unsigned char*) &max, 1);
mapfile write((unsigned char*) &min, 1),
mapfile write((unsigned char*) &min, 1);
++sixteen_18_diff;
break;
/1 19, 20, or 21 bits differ
case 6 : mapfile write((unsigned char*) &mid, 1);
mapfile write((unsigned char*) &mid, 1);
mapfile write((unsigned char*) &mid, 1);
++nineteen_21_diff;
break;
// 22,23, or 24 bits differ
case 7 : mapfile write((unsigned char*) &min, 1);
mapfile. write((unsigned char*) &min, 1);
mapfile write((unsigned char*) &min, 1);
++twentytwo_24_diff;
break;
default : cout << “default - bad value in switch statement\n”;
} // end switch
} // end if
else

{

59

mapfile write((unsigned char*) &white, 1);
mapfile write((unsigned char*) &white, 1);
mapfile. write((unsigned char*) &white, 1);

}

} // end fory
} // The image_size if statement

else {
cout << “\nThe bitmaps are of different size. \n”;

}

cout << “There are “ << error_pixels << “ pixels which are different.\n”;
cout << one_3_diff <<“ differ by 1, 2, or 3 bits.\n”;

cout << four_6_diff << differ by 4, 5, or 6 bits.\n”;

cout << seven 9 diff <<* differ by 7,8, or 9 bits.\n”;

cout << ten_12_diff <<“ differ by 10, 11, or 12 bits \n”;

cout << thirteen_15_diff << differ by 13, 14, or 15 bits.\n”;

cout << sixteen 18 diff << “ differ by 16, 17, or 18 bits.\n”;

cout << nineteen 21 _diff << differ by 19, 20, or 21 bits.\n”;

cout << twentytwo_24 _diff << differ by 22, 23, or 24 bits.\n”;

cout << ‘“\n”’;

mapfile.close();
filel.close();
file2.close();

return O;

} // End main()

// sk ok sk ok 3k 3K 3K 3K 3% ok 3k 3k 3k 5K ok 3k ak sk 3k ok oK oK 3k K % ok ok 3k ok ok ok 3k ok 3K ok ok ok ok ok ok ok ok ok sk ok ok 3k 3K 3k ok ok ok ok sk ok ok ok ok sk ok ok ok %k k kK

// determine whether bits differ

unsigned short bits_different(unsigned char bytel, unsigned char byte2) {
unsigned char xor_byte = 0,
unsigned short count = 0;

xor_byte = bytel " byte2;
for (x=0; x <8, ++x) {
count +=(xor_byte & 1);
xor_byte = xor_byte >>1; }
return count; }

60

D. RGB VECTOR ENCODING STEGO PROGRAM

/% 19 Mar 96 - This version embeds using the modulo-distance-from-origin
technique and repeats each message bit several times.

Some variables are defined in the stego_functions.h file.
*/

#include <iostream h>
#include <fstream.h>
#include <math.h>

#include “stego_functions.h”

fstream infile, // infile is the 24 bit .bmp file
outfile, // outfile is the modified 24 bit .bmp file
textin; // textin is the text to be hidden

char image_file[32], steg_file[32], textsource_file[32]; // variables to hold
// user-supplied file names

unsigned charc, 1, g, b,
textbyte,
raw_red, raw_green, raw_blue, // image file bytes

nothing; // unused byte

int x .y, z, 1, // loop variables
d_mod, // vector length modulo steg_modulo
epsﬂon // amount of displacement of the pixel along its line to origin

repeat,
skip; / number of pixels to skip between protocol events

long total pixels,// number of pixels in the image
pixelnum;// number of pixels used to embed data

double dist, // distance to the origin from the pixel
t, // parametric equation variable for computing the pixel’s
// new position
red, green, blue; // the integer versions of the color channels

unsigned long text_bytes; // number of bytes in the text file

bmpheader header; // the infile header.

61

// Function prototype
void in_bounds(double& red, double& green, double& blue);

main()

{
// read in names of image file and output file
cout << “\n”;

cout << “Enter name of the image file : «;
cin >> image file;

cout << “\nEnter name of the textsource file : «;
cin >> textsource_file;

cout << “\n”;

cout << “Enter name of the output/steg file : «;
cin >> steg_file;

cout << “\n”’;

// Open the input image file and read the header
cout << ‘“\n”’;

infile.open(image _file, i0s::in);
read_bmp_header(infile, header);

// Print the image file’s header data

cout << “File_size: “ << header file_size << ‘\n’;
cout << “Offset bits: “ << header.offset_bits << ‘\n’;
cout << “Size: “ << header.size << ‘\n’;

cout << “Width: “ << header.width << ‘\n’;

cout << “Height: “ << header height << ‘\n’;

cout << “Bit count: *“ << header.bit_count << ‘\n’;
cout << “Image size: “ << header.image size << ‘\n’;
cout << “X pixels: “ << header.x_pixels << ‘\n’;

cout << “Y pixels: “ << header.y pixels << ‘\n’;

cout << “Number colors: “ << header.number_colors << ‘\n’;

cout << “Colors important: “ << header.colors_important << ‘\n’;

cout << “\n”";
// Open the output image file and write its header

outfile.open(steg_file, ios::out);
write_bmp_header(outfile, header);

62

// Open the input text file and count the number of characters init
textin.open(textsource_file, ios::in);

text_bytes = byte_count(textin);

cout << “The input text file has “ << text_bytes <<* bytes.\n";
textin.close(),

// Reset the text file

textin.open(textsource_file, ios::in);

// Insert bits into the image pixels.
infile.seekg(header.offset_bits, ios::beg); // Make sure we are past the
// file header.

// Make sure data will fit

total_pixels = header.width * header height;

if (text_bytes*8*redundancy > total_pixels) {
cout << “Input data file is too big! Aborting. \n”;
return O,

}

// Compute skip factor. skip is the number of pixels to skip

skip = (header.width*header.height) / ((text_bytes*8)*redundancy);
skip = skip - 3;

if (skip < 0) skip = 0,

cout << “Skip = “ << skip << “\n’;

pixelnum = 0,

while ('textin.eof()) { /loop until the text file is empty
textin.read((unsigned char*) &textbyte, 1); / Read a text byte
for (x=0; x<8; ++x) { /Embed all 8 bits of the text byte

for (repeat=0; repeat<redundancy; ++repeat) { // Embed each bit
// #redundancy times

// Read the 3 bytes of a pixel

infile.read((unsigned char*) &raw_red, 1);

infile.read((unsigned char*) &raw_green, 1);

infile.read((unsigned char*) &raw_blue, 1);

++pixelnum,;

63

// Convert the values to integers
red = raw_red;

green = raw_green,;

blue = raw_blue;

// Make sure no value is clear of the upper and lower bounds
in_bounds(red, green, blue),

// Compute the distance from the origin
dist = sqrt((double)(red*red + green*green + blue*blue));
d_mod = ((int) dist) % steg_modulo;

// Find out if the pixel needs to slide and how much.
/1 Set the values of the raw color variables to the
// value which will be written to the stego image file.

if (textbyte & 1) { //Embedal

if (d_mod == encode_1) epsilon = 0;

else ;

if (d_mod < encode_1 && d_mod >= encode_0) epsilon = encode 1-d mod,
else ;

if (d_mod > encode_1) epsilon =-1*(d_mod - encode 1),

else ;

if (d_mod < encode 0) epsilon =-1*(lo_to_hi + d_mod),

else ;

// t is the variable in the parametric equations for
// the line on which the pixel lies.
t = ((double) epsilon)/dist;
// Compute the new values for the pixels
red = red + red*t;
green = green + green*t;
blue = blue + blue*t;
}// End if

else { /Embed a0

if (d_mod == encode_0) epsilon = 0;
else ;

64

if (d_mod > encode_0 && d_mod <= encode_1) epsilon = -1 *(d_mod - encode_0),

else ;

if (d_mod > encode_1) epsilon = (encode 0 + (steg_modulo - d_mod));
else ;

if (d_mod < encode_0) epsilon = (encode_0 - d_mod);

else ;

// t is the variable in the parametric equations for
// the line on which the pixel lies.

t = ((double) epsilon)/dist;

// Compute the new values for the pixels

red = red + red*t;

green = green + green*t,

blue = blue + blue*t;

} // end else

raw_red = (unsigned char) red; // Real value is truncated on conversion
raw_green = (unsigned char) green;
raw_blue = (unsigned char) blue;

outfile.write ((unsigned char*) &raw_red, 1);
outfile.write ((unsigned char*) &raw_green, 1),
outfile write ((unsigned char*) &raw_blue, 1),

} // End of ‘repeat redundancy times’ loop

// Skip some pixels between embedded bits
for (z=0; z<skip; ++z) {

infile.read((unsigned char*) &raw_red, 1),
infile.read((unsigned char*) &raw_green, 1);
infile.read((unsigned char*) &raw_blue, 1),
++pixelnum;

outfile. write ((unsigned char*) &raw_red, 1);

outfile write ((unsigned char*) &raw_green, 1),

outfile.write ((unsigned char*) &raw_blue, 1),
} //forz

textbyte >>= 1,

65

} // End for x to embed 8 bits
} // end while ! textin.eof()

// At end of input file so just continue to write pixels without modification.

while (linfile.eof()) {
infile read((unsigned char*) &raw_red, 1);
infile.read((unsigned char*) &raw_green, 1)
infile.read((unsigned char*) &raw_blue, 1);
if (infile.eof()) {
outfile.write ((unsigned char*) &raw_red, 1);
outfile write ((unsigned char*) &raw_green, 1);
outfile.write ((unsigned char*) &raw_blue, 1); }

}

cout << “Pixels used: “ << pixelnum << ‘\n’;

outfile.close();
textin.close();
infile.close();

return 0; // End of main()

}

void in_bounds(double& red, double& green, double& blue) {

// This function checks to make sure the color values are
// in bounds. If not the value is adjusted to be in bounds.

if (red > hi_bound) red = hi_bound,;
else {
if (red <lo_bound) red = lo_bound; }

if (green > hi_bound) green = hi_bound;
else {

66

if (green < lo_bound) green = lo_bound; }
if (blue > hi_bound) blue = hi_bound,
else {

if (blue <lo_bound) blue =lo_bound; }

} // end in_bounds

67

E. RGB VECTOR STEGO EXTRACTION PROGRAM
/*

This version of extract will extract data hidden by modifying
the modulus of the distance from the origin. This version
uses a user supplied skip factor.

Some variables are defined in the stego_functions.h file.

*/

#include <iostream.h>
#include <fstream.h>
#include <math.h>

#include “stego_functions.h”

fstream infile, // infile is the 24 bit .bmp file
outfile; // outfile is the modified 24 bit .bmp file

char steg_file[32], data_out_file[32]; // variables for the user-supplied
// file names

unsigned char hidden_byte, / the byte of data being recovered
raw_red, raw_green, raw_blue,// image file bytes
nothing;// unused byte

unsigned charc, 1, g, b;
int x,y,z,i, // loop variables

red, green, blue, // integer versions of the color values

d_mod,// distance to origin modulo steg_modulo

skip; // number of pixels to skip between protocol events
double dist;
unsigned short bytes_recovered; // count of bytes recovered so far
unsigned long hidden_bit, // holds the bits representing the hidden bit
long pixelnum; // number of pixels used in the recovery process
unsigned long steg_bytes=0;

bmpheader header; // This is the current infile header.
// Function prototype

int byteweight(unsigned long hbyte); // Counts the number of 1’s in an unsigned
// long variable

68

main()
{
// Get the name of the input image file containing stego data (steg_file)
// and the name of the file in which the extracted data will be stored.
cout << “\n”;
cout << “Enter the stego image file name: “;
cin >> steg_file;
cout << “Enter a file name for the extracted data: “;
// cin >> data_out_file;
data_out_file = “steg.out”;
cout << “\nThe data will be extracted based on mod62\n”;
cout << “How many bytes are hidden? “;
cin >> steg_bytes;
cout << ‘\n’;
// cout << “What is the skip factor? “,
// ¢cin >> skip;
skip =17,
cout << ‘\n’;

infile.open(steg_file, ios::in);
read_bmp_header(infile, header);

cout << “\nStego image file information: \n\n”;

cout << “File_size: “ << header file_size << ‘\n’;

cout << “Offset bits: “ << header.offset_bits << “\n’;

cout << “Size: “ << header.size << ‘\n’;

cout << “Width: “ << header.width << ‘\n’;

cout << “Height: “ << header.height << “\n’;

cout << “Bit count: “ << header.bit_count << ‘\n’;

cout << “Image size: “ << header.image_size << ‘\n’;

cout << “X pixels: “ << header.x_pixels << ‘\n’;

cout << “Y pixels: “ << header.y_pixels << ‘\n’;

cout << “Number colors: “ << header.number_colors << “\n’;
cout << “Colors important: “ << header.colors_important << “\n’;

cout << ‘\n’;

infile.close();
infile.open(steg_file, i0s::in);

outfile.open(data_out_file, ios::out); // Open the file that will
// hold the extracted data.

69

// We need to be at the first byte of the first pixel.

// The image header is contained in the

// first 54 bytes so we go to the 55th byte which contains the
// 1east significant bit(s) of the first byte of the hidden data.
// The seekg value is an offset from the first byte of the file.

infile.seekg(header.offset_bits, i0s::beg);
// Begin a loop to read all the bytes containing data.

bytes_recovered = 0,
pixelnum = 0;

while (bytes_recovered < steg_bytes) {

hidden_byte = 0;
for (x=0; x<8; ++x) { / Loop 8 times to recover 1 byte of hidden data
hidden_bit = 0;
for (y=0; y<redundancy; ++y) { // Loop redundancy # times to get one bit
// Read a pixel
infile.read((unsigned char*) &raw_red, 1);
infile.read((unsigned char*) &raw_green, 1),
infile.read((unsigned char*) &raw_blue, 1);
++pixelnum,;

// Convert the values to integers
red = (int) raw_red,

green = (int) raw_green;

blue = (int) raw_blue;

// Compute the distance from the origin
dist = sqrt((double)(red*red + green*green + blue*blue));
d_mod = ((int) dist) % steg_modulo;

if (d_mod > pivot) hidden_bit |= (1 <<y);
else;
} // Fory

// Skip some pixels after each bit is read
for (z=0; z<skip; ++z) {

70

infile.read((unsigned char*) ¬hing, 1),
infile.read((unsigned char*) ¬hing, 1),
infile.read((unsigned char*) ¬hing, 1);
++pixelnum;

} // forz

if (byteweight(hidden_bit) > (int)(redundancy/2)) hidden_byte [= (1 << X);
else;

} // End of x loop
outfile write((unsigned char*) &hidden_byte, 1);
++bytes_recovered;

if (infile.eof()) return 0; // Don’t let it go beyond the end of the file.

} // End while bytes_recovered
cout << “Pixels used: << pixelnum << “\n’;

infile.close();
outfile.close();

return O,

//***

int byteweight(unsigned long hbyte) {

int x, w;

w=0,

for (x=0; x<15; ++x) {
if (hbyte & 1) ++w;
hbyte >>=1;

}

return w;

}

71

F. STEGO FUNCTIONS HEADER FILE

// This is the stego_functions.h file
#include <fstream.h>

struct bmpheader { // This structure holds the 24 bit .bmp
char bm[2]; // header information. There is no pallette
unsigned long file_size;// data.

unsigned short reserved[2];

unsigned long

offset_bits,

size,

width,

height,

unsigned short

planes,

bit_count;

unsigned long

compression,

image_size,

x_pixels,

y_pixels,

number_colors,

colors_important;

I8
int redundancy = 5; // the number of times to embed a bit

// Set the modulo parameters
int steg_modulo = 62,
pivot = 30, // Anything over 30 is a 1

encode 1 =47,
encode 0 = 16,
hi_bound = 224,
lo_bound = 31,
lo to_hi=15;

/*int steg_modulo = 42, commented out since we are using steg_modulo=62
pivot = 20, / Anything over 20 is a 1
encode 1 =31,

encode_0 = 10,
hi_bound = 235,
lo_bound = 20,

72

lo_to_hi=11;*/

// Function prototypes

void read_bmp_header(fstream& infile, bmpheader& header);
void write_bmp_header(fstream& outfile, bmpheader& header),
long int byte_count(fstream& intext);

unsigned long read_lsbfirst_long(fstream& infile),

unsigned short read_lsbfirst_short(fstream& infile),

void write_lsblongfirst(fstreamé& outfile, unsigned long value),
void write_Isbshortfirst(fstream& outfile, unsigned short value);

// The .bmp file format was designed for dos based machines.

// The values of the header are stored in little endian format.

// The stego programs were developed on big endian workstations.
// The functions below read and write these little endian

// values to and from big endian variables.

”***

// This function reads a .bmp header into a bmpheader structure

// which is passed by reference.

void read_bmp_header(fstream& infile, bmpheader& header) {
infile read((unsigned char*) &header bm[0], 1);
infile read((unsigned char*) &header bm[1], 1);
header file_size = read_lsbfirst_long(infile);
header reserved[0] = read_lsbfirst_short(infile);
header.reserved[1] = read_lsbfirst_short(infile);
header.offset_bits = read_lsbfirst_long(infile);
header.size = read_lsbfirst_long(infile),
header width = read_lIsbfirst_long(infile),
header.height = read_lsbfirst_long(infile);
header planes = read_lsbfirst_short(infile);
header bit_count = read_lIsbfirst_short(infile);
header.compression = read_lsbfirst_long(infile);
header.image_size = read_lsbfirst_long(infile);
header.x_pixels = read_lsbfirst_long(infile);
header.y_pixels = read_lsbfirst_long(infile);
header.number_colors = read_lsbfirst | ong(infile);
header.colors_important = read_| sbfirst_long(infile),
} // End of read_bmp_header()

N**

// This function writes a .bmp header to a file.

73

void write_bmp_header(fstream& outfile, bmpheader& header) {
outfile. write((unsigned char*) &header.bm[0], 1);

outfile. write((unsigned char*) &header.bm[1], sizeof(header.bm[1]));
write_lsblongfirst(outfile,header file_size);
write_lsbshortfirst(outfile header.reserved[0]);
write_Isbshortfirst(outfile,header.reserved[1]);
write_Isblongfirst(outfile,header.offset_bits);
write_lsblongfirst(outfile,header size);
write_Isblongfirst(outfile,header width);
write_Isblongfirst(outfile,header height),
write_Isbshortfirst(outfile,header.planes);
write_Isbshortfirst(outfile,header.bit_count),
write_lsblongfirst(outfile,header.compression);
write_Isblongfirst(outfile,header.image_size),
write_Isblongfirst(outfile,header x_pixels);
write_Isblongfirst(outfile,header.y_pixels);
write_Isblongfirst(outfile,header.number_colors);
write_Isblongfirst(outfile,header.colors_important),

} // End of write_bmp_header()

//***

long int byte_count(fstreamé& intext) {
// This function counts the number of bytes in a file and
// returns the count as a long integer.

int count = 0O;

while (lintext.eof()) {
(void) intext.get();
++count;

}

return count;
} // End of byte_count

//**

// Read a little endian long integer
unsigned long read_lsbfirst_long(fstream& infile) {

unsigned char buffer[4];
unsigned long value;

infile.read((unsigned char*) &buffer, 4);
value = (unsigned long) (buffer[3] << 24),

74

value |= (unsigned long) (buffer[2] << 16);
value |= (unsigned long) (buffer[1] << 8);
value |= (unsigned long) (buffer[0]);

return value;

} // End of unsigned long

//**

// Read a little endian short integer

unsigned short read_Isbfirst_short(fstream& infile) {

unsigned char buffer{2];
unsigned short value;

infile.read((unsigned char*) &bulffer, 2);
value = (unsigned short) (buffer[1] << 8);
value |= (unsigned short) (buffer[0]);

return value;

} // End of unsigned short

/*infile seekg(-1, ios::cur), Back up one byte/
infile. write((unsigned char*) &new_c, 1); */

//**

// Write a little endian long integer

void write_Isblongfirst(fstream& outfile, unsigned long value) {

unsigned char
buffer[4];

buffer[0] = (unsigned char) (value),
buffer[1] = (unsigned char) ((value) >> 8);
buffer[2] = (unsigned char) ((value) >> 16);
buffer[3] = (unsigned char) ((value) >> 24);
outfile write((unsigned char*) &buffer, 4),

75

} // End of unsigned long

//**

// Write a little endian short integer

void write_Isbshortfirst(fstream& outfile, unsigned short value) {
unsigned char

buffer[2];

buffer[0] = (unsigned char) (value),
buffer[1] = (unsigned char) ((value) >> 8);
outfile.write((unsigned char*) &buffer, 2);
} // End of unsigned short

/!

76

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library

Naval Postgraduate School
411 Dyer Rd.

Monterey, CA 93943-5101

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Raymond Isbell

Central Imagery Office
8401 Old Courthouse Road
Vienna, VA 22182-3280

Dr. Blaine Burnham

National Security Agency

Research and Development Building
R23

9800 Savage Road

Fort Meade, MD 20755-6000

William Marshall

National Security Agency

Research and Development Building
R23

9800 Savage Road

Fort Meade, MD 20755-6000

Dr. Cynthia E. Irvine

Computer Science Department

Code CS/Ic

Naval Postgraduate SchoolMonterey, CA 93943-5118

77

15

8.

10.

11.

12.

Dr. Harold Fredricksen

Mathematics Department, Code MA/FS

Naval Postgraduate School
Monterey, CA 93943-5118

Commanding Officer

Fleet Information Warfare Center
2555 Amphibious Drive

NAB Little Creek

Norfolk, VA 23521-3225

Naval Information Warfare Activity
ATTN: CDR J. O’Dwyer

9800 Savage Road

Fort Meade, MD 20755-6000

LT Hannelore Campbell
USS Boxer (LHD 4)
FPO AP 96661

LT Daniel L. Currie III

Fleet Information Warfare Center
2555 Amphibious Drive

NAB Little Creek

Norfolk, VA 23521-3225

78

